Tangent and Cotangent Bundles

ثبت نشده
چکیده

of subsets of TM: Note that i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU =  1 (R) 2 : ii) If we de…ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so  (p; Xp) = ( (p); F ( Xp)); and  1 = ( 1 ; F 1 ): Now take  1 (U);  1 (V ) 2 and suppose (p; Xp) 2  1 (U)\  1 (V ) for some U; V open in R: )  (p; Xp) 2 U and  (p; Xp) 2 V Take U = U U and V = V V where U ; U ; V ; V are open sets in R:Clearly (p) 2 U ; F ( Xp) 2 U ; (p) 2 V , and F (Xp) 2 V : From the de…nition of open set there exist neighborhoodsW 1 ;W 2 ;W 1 ;W 2 of (p); (p); F ( Xp) and F (Xp) respectively such that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural tensor fields of type (0, 2) on the tangent and cotangent bundles of a Fedosov manifold

To any (0,2)-tensor field on the tangent and cotangent bundles of a Fedosov manifold, we associate a global matrix function ‘mutatis mutandis’ as in the semi-Riemannian case. Based on this fact, natural (0,2)-tensor fields on these bundles are defined and characterized. Mathematics Subject Classification: 53C99; 53C50.

متن کامل

Derived Algebraic Geometry IV: Deformation Theory

1 The Cotangent Complex: General Theory 4 1.1 Stable Envelopes and Tangent Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Relative Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 The Tangent Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 The Relative Cotangent Complex...

متن کامل

Dimensional Reduction of Invariant Fields and Differential Operators. I. Reduction of Invariant Fields

Problems related to symmetries and dimensional reduction are common in the mathematical and physical literature, and are intensively studied presently. As a rule, the symmetry group (“reducing group”) and its orbits (“external dimensions”) are compact, and this is essential in models where the volume of the orbits is related to physical quantities. But this case is only a part of the natural pr...

متن کامل

Lecture Notes on Differentiable Manifolds

1. Tangent Spaces, Vector Fields in R and the Inverse Mapping Theorem 1 1.1. Tangent Space to a Level Surface 1 1.2. Tangent Space and Vectors Fields on R 2 1.3. Operator Representations of Vector Fields 3 1.4. Integral Curves 4 1.5. Implicitand Inverse-Mapping Theorems 5 2. Topological and Differentiable Manifolds 9 3. Diffeomorphisms, Immersions, Submersions and Submanifolds 9 4. Fibre Bundle...

متن کامل

Hyper - Kähler Sigma Models on ( Co ) tangent Bundles with SO ( n ) Isometry

We construct N = 2 supersymmetric nonlinear sigma models whose target spaces are tangent as well as cotangent bundles over the quadric surfaceQ = SO(n)/[SO(n−2)×U(1)]. We use the projective superspace framework, which is an off-shell formalism of N = 2 supersymmetry. E-mail: [email protected] E-mail: [email protected] 1

متن کامل

Fedosov Quantization of Lagrange–Finsler and Hamilton–Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kähler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008